
October 2011/Dagny G. Pedersen 1

Quality is the responsibility of the whole team

• Test do not create quality or take
it away, it is only a method of
assessing the quality of a
product.

• If development schedules get
tight, make sure project
managers does not use the test
team as quality gatekeeper at the
end of the development process
by skipping qa activities and
testing at earlier stages of
development.

• Include test coordinators in status
meetings or make sure they get
all information that may influence
the scope, prioritizations, method
and/or progress of testing
activities including test planning.

Never trust the test team to be the
quality gatekeeper

October 2011/Dagny G. Pedersen 2

How to make the testers love you
(tester=business expert)

• Configuration management procedures are not invented to make
developer’s life miserable – lack of configuration managements
makes everybody miserable

• System test is the end users first encounter with the new system –
think about how you can contribute to a GOOD first impression

• Insist on project resources for deliverables and ways of working that
promotes good quality (business term glossary is one example,
coding standards and reviews are others)

• Defects that should never survive unit test and unit integration test
are
– Invalid input allowed (e.g. alphanumeric input in numeric field, values

out of range)
– Missing error messages
– Missing field labels, buttons, values in drop-down lists etc.

October 2011/Dagny G. Pedersen 3

Test tools – Computer Aided Software Testing
(CAST)

Topics
• Type of test tools
• Test automation
• Selection and introduction of test tools

October 2011/Dagny G. Pedersen 4

Why invest in test tools ?

Some reasons why an enterprise needs software testing tools are:
• The demand for testing is continuously growing

• accelerating marked demands for new releases of business systems
• increasing number of user interface platforms and
• the need to test upgrades of a whole range of technical infrastructure components.

• Can make testing cheaper

There just is not enough time, money and human resources with the right knowledge to
keep testing coverage at an acceptable level using only manual testing.

• The business systems of today are so complex and diversified that it is impossible to
assess the quality unless one has a tool to support the test process and keep track of
all quality attributes and their statuses.

• Multi-site organisations with stakeholders, tester and developers spread over several
sites and even in different time zones also counters for a tool to ease sharing of
information.

• Can make testing more systematic

• Some tests are not possible to do without tools

October 2011/Dagny G. Pedersen 5

ALM = Application Lifecycle Management

• The term is commonly used for products that somehow
touch the application lifecycle, from requirements
gathering and configuration management to project
management and monitoring.

• New tools and improved versions of existing tools are
continuously introduced to the market.

• No vendor support ALL aspects of ALM in one single tool

October 2011/Dagny G. Pedersen 6

A myriad of vendors and tools

October 2011/Dagny G. Pedersen 7

C
onfiguration m

anagem
ent

Tools for test
of spesial
featuresTest Management tool

Requirement
management

tool

Incident Management
Tracking Tool

Tools for Performance/
Load/Stress testing

Functional testing tool including
automation capabilities

Test Data Preparation Tool

Project / task / resource m
anagem

ent

ALM tool model

One key requirement to a test tool is
OPEN INTERFACE capabilities.

October 2011/Dagny G. Pedersen 8

Configuration management

• The most important tool !
• Lack of configuration management is the 8th deadly sin!
• A developer

– must always know which version he is deploying
– must always keep in mind changes in different branches of the code

• A tester must always know
– which version of a product he is running his tests against
– use the corresponding version of test script/procedure

• There is seldom a good excuse for bad configuration management.
Still a lot of developers and testers everywhere waste a lot of time
due to lack of version control.

October 2011/Dagny G. Pedersen 9

Tool for test of special features

• Security testing (data privacy, and access control, virus
checking)

• Usability testing
• Coverage tool
• Website link checking tool to look for broken links
• Drivers for early verification of interface specifications
• Dynamic analysis tool (debugger is one example,

performance testing tool another)
• Static code analyzer
• Cross-browser compatibility tool

October 2011/Dagny G. Pedersen 10

Some basic terms

• Static testing tool: traverse and check the code without executing it
• Dynamic testing tool: executes the code
• Test framework:

– A tool to make execution of a test object possible
– A developer tool to isolate a component from its surroundings (or that replaces or

generates drivers and stubs)
– Otherwise used in industry for:

• Reusable and extensible testing libraries to build testing tools (such tools are
also called ”test harness”)

• A type of design of test automation (like data-driven, keyword-driven)
• The process for executing tests

• Test automation framework
– defining the format in which to express input variables and expected results
– creating a mechanism to hook into or drive the application under test
– executing the tests
– reporting results

October 2011/Dagny G. Pedersen 11

Test management tool

• Support the whole test process: test planning, test design, test
execution and incident management.

• Test planning (coverage, status of test scripts (design, review,
ready), who is responsible, priority

• Test design
• Test execution planning: test cycles, test sets, when and whom
• Interface for executing tests and logging test results.
• Progress and status reports (which tests are passed, failed, not

completed, not run)
• Team collaboration (mail notification is one example)
• A lot of these tools also support requirement management:

– Requirement prioritization, release planning, version handling
– Risk models to support risk based testing

October 2011/Dagny G. Pedersen 12

Test management tool requirements

• Provide necessary metrics for quality assessment including
requirement traceability

• Support multi-projects
• Support agile as well as waterfall software development lifecycle

models
• Support distributed teams (‘My page’ is a very useful feature!)
• Integration with tools from other vendors, e.g. tools for test

automation
• Ease of use
• Ease of customization (roles, work flows, access rights, attributes)
• Customer support
• Innovation
• TOC – unless your budget is unlimited

October 2011/Dagny G. Pedersen 13

Using test results to assess quality

• Metrics from test:
– Requirements coverage summary: requirements verified OK,

requirements failed and requirements not yet tested.
– Requirement incident count
– Summary of test execution status;

– Number of test passed, number of tests failed, number of
tests not run.

– Incident summary report showing total number of incidents
grouped by severity and status.

– A list of all unresolved incidents
– Incident progress rate together with test run progress rate

October 2011/Dagny G. Pedersen 14

Graphs supporting test completion decision

Incident
Progress Rate
Graph

Test Run
Progress Rate
Graph

October 2011/Dagny G. Pedersen 15

Potential benefits of test management tool

• Ease of access to information on test procedure tasks
and test results

• (Less) Unbiased assessment of quality
• Reuse of test scripts is simplified
• Test process improvement

October 2011/Dagny G. Pedersen 16

NOTE!! Using a test management tool is no
guarantee for high quality deliveries

• Metrics from the tool can show complete requirements coverage,
100% successful test execution and no open defects at test
termination and still result in a product release with a lot of defects.
This is normally caused by a combination of several factors like
– Incomplete requirements
– Inadequate test data
– Poor test design
– Test not focusing on the high risk areas
– Testing tasks left out of plans because not enough time and resources
– Inadequate version handling of requirements, code and test assets
– -…..

• These factors are due to procedural shortcomings, lack of software
testing skills etc. and can not be helped by any tool

October 2011/Dagny G. Pedersen 17

Incident management tool

• Incident reports with documentation such as screen captures
• Categorization
• Prioritization
• Allocation
• Support several incident types (defect, change request, issue…)
• Incident work flow depending on incident type
• Role based access rights (not all project members should be

allowed to close a defect)
• Statistical analysis (can for instance spot error prone application

areas)

• Integration with configuration management (which files are modified
when fixing a defect)

October 2011/Dagny G. Pedersen 18

Incident workflow example

Tested OK
<Env 3>TestedOK

<Env 2>

Test <Env 3>

Test <Env 2>

New Open In Progress

Closed

Fixed Test <Env 1>

Reopen
Tested OK
<Env 1>

Rejected

Valid Transitions and roles
New -> Open: Bug fix manager when assigning issue to developer
Open -> In Progress: Developer when starting work on the incident
In Progress -> Fixed: Developer when defect is ready for deployment, assigns to deployment
Fixed -> Test <env 1>: Deployment assigns to Test Manager when fix is deployed in <Env 1>
Test <Env 1> - >Tested OK <Env 1>: Tester assigns to Deployment or to Test Manager if Env 1 is ’last stop’
New, Open, In Progress, Reopen -> Rejected : Test Manager, Bug fix manager or developer assigns to tester

October 2011/Dagny G. Pedersen 19

Tools for test design and test data generators
(From Hans)

• From database
– Generates databases and files from schema
– Filters contents from existing bases
– Translates data between different formats

• From code
– In order to cover all code
– Problem: Missing code not found
– Problem: Code itself is test basis :-(

• From interfaces
– Finds which data are used in interfaces
– Can make a GUI-map
– Can generate erroneous input

• From (requirements) specification or models
– Formal notation necessary
– UML, MSCs, state charts
– “Model based testing”

• Generators for combinations

• Random generation

Creativity of a test designer
cannot be replaced by tools.
But “standard tests” can be
generated.

Expected results/ test oracle:
Very difficult to generate.

October 2011/Dagny G. Pedersen 20

Tools for static testing

• Tool that support the review process (plan, execute and evaluate
results)

• Static analyzers (developers tool) (See chapter on static testing)
– The compiler

• Data flow and control flow anomalies
• Code standard violations
• Field boundaries over-/underflow

– Measurement of code complexity to select code that needs review
• Model checking tools

• Website link checking tool to look for broken links
• These kind of tools are cheap and using them can save a lot of time

and money!

October 2011/Dagny G. Pedersen 21

Test automation

• Test automation has for more than a decade been praised as the
silver bullet to control the increasing cost of software testing.

• The myth that automation can reduce head count creates a dilemma
when initiators for automation requires resources for test automation
planning, script generation and maintenance of scripts.

• Return on investment for test automation cannot be measured in
head counts but rather in these potential benefits

• the ability to find defects up front
• better test coverage with the same number of testers
• less boring work
• better accuracy and repeatability
• the ability to uncover defects that manual testing cannot (like

system resource overutilization)

October 2011/Dagny G. Pedersen 22

Things to consider when planning test automation

• How is your manual testing process?
• The principle of finding defects as early as possible

is valid also with automated testing
• Submitting untested software to automated system test

is very bad for the ROI of automation

"If you automate chaos, you get faster chaos."
(Dorothy Graham)

"If you automate chaos, you get faster chaos."
(Dorothy Graham)

October 2011/Dagny G. Pedersen 23

Planning- Factors to consider when picking the
best candidates for test automation

• Stability of test object
– Detailed knowledge of test object and preferably also the road

map for later releases
– Frequency of manual testing

• Complexity
• Test Data

– Test consumes data and it is no practical way of a refresh
– It must be possible to restore test precondition automatically

either by roll-back or by running a script ahead of the test

• Risk

October 2011/Dagny G. Pedersen 24

Payment

Payment
registration
screens

Input:
Debit account
Credit account
Payment date
Payment amount
…..

Services

Payment
overview
screen

Payment
detail
screen

Account
validation

Lists Future
payments

Display payment
details

Test script flow:
1. Register payment
2. Go to payment overview
3. Select payment from step 1
4. Compare all fields with input from

step 1
5. Return to payment overview
6. Cancel payment from step 1

Test of payment – a test automation example

Test script design details:
Payment screen is tested
in every detail:
Invalid input
(date, amount, account,
missing input, message
field and so on….), use of
tabulator key, use of
buttons …

October 2011/Dagny G. Pedersen 25

Update
account

Update
GL Clearing Services

Problems with test design in previous slide
The test pretends to be a system test/acceptance test. Business testers can be

mislead to think that all business rules related to payments have been validated.
Defects related to update of account balance, update of GL will remain undetected.
In order to validate remaining business process, testers will have to enter a new payment
Repeating tests on screen input will eventually not detect any new defects

Payment

October 2011/Dagny G. Pedersen 26

Soft aspects related to test automation

• Business testers mistrust automatic test results – want to
be assured by checking themselves

• Business testers feel automation is a job threat
• Business testers are intimidated by the technical harness

surrounding automated scripts and feel they loose
control of the test process

Neglect of these aspects can stop the automation initiative.

October 2011/Dagny G. Pedersen 27

Test automation initiative and organization

• Involve business testers early in test automation initiative.
• Involve business testers in test planning and design.
• Communication: You cannot expect the business expert to read 10 pages of

technical test design documentation. Think carefully about how new testers
shall get sufficient information about the test coverage.

• Be accurate about which testing still has to be manual
• Status reports must be a summary of manual and automated test coverage

and execution results so business experts testers get the full picture both
during planning and during execution.

• Tool support must be adequate during build up of automated test suit but
also afterwards in ‘everyday use’ of the test suite.

• Run a health check of test environment up front before running the business
test scripts. Testers will mistrust scripts that often fails due to non-functional
errors and revert to manual testing

October 2011/Dagny G. Pedersen 28

Test automation – different tool types

• Capture/replay tools
– Are very exposed to changes in test object
– (But can be useful for performance testing)

• Pure script based tools -Writing programs to test programs:
• Development resources
• Test scripts also needs debugging
• Test scripts also need maintenance
• The challenge of keeping the test scripts aligned with the test object

• Key word driven test design (action-word) tools
• Data driven testing tools

– Anything that has a potential to change (also called "Variability" and
includes such as environment, end points, test data and locations, etc),
is separated out from the test logic (scripts) and moved into an 'external
asset'. This can be a configuration or test dataset in a spreadsheet or
database. The logic executed in the script is dictated by the data values.

• A lot of tools on the market combine some of these characteristics

October 2011/Dagny G. Pedersen 29

Keyword driven tools

• Pros
– Maintenance is low in a long run

• Test cases are concise
• Test Cases are readable for the stake holders
• Test Cases easy to modify
• Keyword re-use across multiple test cases

– Not dependent on Tool / Language
– Division of Labor

• Test Case construction needs stronger domain expertise - lesser tool /
programming skills

• Keyword implementation requires stronger tool/programming skill - with
relatively lower domain skill

– Abstraction of Layers.
– Scripts can be used for both manual and automatic test execution

• Cons
– Longer Time to Market (as compared to manual testing or record and replay

technique)
– Moderately high learning curve initially

October 2011/Dagny G. Pedersen 30

Cost of automation

• Training
• Script
• Design (unless you can reuse test design for manual testing)
• Documentation
• Test data
• Incident analysis (Do not underestimate this – incidents are

produced at a much higher rate. When a test fails, is it caused by a
setup bug, test data bug, automation bug or product bug)

• Test execution
• Change management and maintenance
• Servers and other infrastructure costs
• License fees and tool maintenance fees

October 2011/Dagny G. Pedersen 31

Calculation of ROI for test automation

• Common formula for calculation of winnings
Manual testing cost =

Manual preparation cost + cost of manual test execution x times
executed

Automated testing cost =
Automation preparation cost + cost of automated test execution x

times executed

• Several flaws with this approach
– You cannot count tests that you normally will not repeat with

manual testing
– You cannot equate manual testing with automated testing

• The automated test does everything exactly like every time
and will eventually not find more defects

• The human tester has awareness of all kind of product
characteristics

October 2011/Dagny G. Pedersen 32

Service testing – 4 focus areas

• To fully utilize the possible benefit of SOA architecture, every service
consumer cannot test all functionality of the service provider.

• 4 primary focus areas: Functional, Performance, Interoperability, and
Security

• Functional testing provides the ability to verify the proper behavior of
services and build regression test suites to automate testing and baseline
expected behavior

• Performance testing to determine throughput and capacity statistics of the
service

• Interoperability testing to measure the design characteristics of a service
as well as the runtime adherence to standards and best-practices. (testing
against technical design specifications)

• Security testing (data integrity, data privacy, and access control)

October 2011/Dagny G. Pedersen 33

SOA test harness
A lot of services do not have a user interface

Service A

Service B

Service B Service C

Request Request Request

Response Response Response

Driver
(Substitute
Service A)

Stub
(Substitute
Service C)

(1) (2)

(3)(4)

Test harness

October 2011/Dagny G. Pedersen 34

Some commercial SOA testing tools

Company name Product name SOA test harness

GreenHat GH Tester

IBM Software group Rational Tester for SOA Quality

iTKO Lisa

Parasoft SOAtest

Crosscheck Networks SOAPSonar

Hewlett-Packard HP Service Test

SmartBear soapUI (open source)

October 2011/Dagny G. Pedersen 35

Risk with tools (from Hans)

• Unrealistic expectations
• Underestimating time, cost and effort to introduce (training,

coaching, help, ...)
• Underestimating time and cost for follow-up, change of processes,

etc.
• Underestimating need for maintenance of tools and the assets

maintained or generated by tools
• Over-reliance on the tool
• Defects in the tool, and fighting against them
• Neglecting version control of test assets
• Neglecting relationships and interoperability between tools
• Tool vendor problems (out of business, retiring the tool)
• Sometimes too much trust into the tool instead of intelligent choices.
• Poor support
• Platform problems

October 2011/Dagny G. Pedersen 36

Introduction of tools

• Define your process – then look for tool support.
• Remember that all tools will require resources with

skills.
• Suggested sequence of tool introduction:

Book: My suggestion:
1. Incident management 1. Configuration management
2. Configuration management 2.Incident management
3. Test planning 3.Test planning
4. Test execution 4. Test specification
5. Test specification 5. Test execution

October 2011/Dagny G. Pedersen 37

• Which testing tasks needs tool support
• Tool requirement specification
• Market research (long list of possible tools and vendors)
• Tool demos,
• Follow up references

• Create short list
• Further studies of short list candidates, if demonstration license

available – try the product yourself
• Make a business case as basis for following up costs and benefits
• Review results and select

Tool selection process

October 2011/Dagny G. Pedersen 38

Selection criteria

• Learning curve for users (e.g. new method)
• Ease of integration with current environment
• Ease of integration with other tools
• How does the product fit in with the test object (not

applicable for all tools)
• Platform (db, operating system, browsers)
• Vendors market position, customer support, reliability
• License and maintenance

Weigh the criteria and weigh how the tools meet them

October 2011/Dagny G. Pedersen 39

Tool introduction

• Run a pilot – a pilot should result in a list of necessary tool
implementation tasks *

• Evaluate results – what is to gain?
• Adapt process
• Train the users (Just in time)
• Stepwise introduction
• Tool support is an ongoing task

• Evaluate the benefit and calculate TOC (Total Cost of Ownership).
after 1-2 years

• The cost of training and support must be included when you do
calculate TOC

* Rules for usage, adaption of test procedure, naming standards,
workflow, training program,

October 2011/Dagny G. Pedersen 40

References

• Kaner, Bach, Petticord :Lessons learned in software testing, Wiley 2002
• Gartner:Magic quadrant for integrated software quality suites, ID number G00208975
• Dorothy Graham: Successful test automation, Tutorial Software 2011

(Dataforeningen)
• Software Test Automation, Mark Fewster & Dorothy Graham, Addison Wesley, 1999
• http://www.oasis-open.org/
• www.soatesting.com
• http://www.thbs.com/pdfs/SOA_Test_Methodology.pdf
• List of tools: http://www.softwareqatest.com/qatweb1.html#LOAD
• http://www.usefulusability.com/24-usability-testing-tools/#Paper
• http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
• http://www.smashingmagazine.com/2011/08/07/a-dozen-cross-browser-testing-tools/
• http://www.satisfice.com/blog/ : testing blog of James Bach

http://www.soatesting.com/
http://www.thbs.com/pdfs/SOA_Test_Methodology.pdf
http://www.usefulusability.com/24-usability-testing-tools/#Paper
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
http://www.smashingmagazine.com/2011/08/07/a-dozen-cross-browser-testing-tools/

	Quality is the responsibility of the whole team
	How to make the testers love you�(tester=business expert)
	Test tools – Computer Aided Software Testing (CAST)
	Why invest in test tools ?
	ALM = Application Lifecycle Management
	A myriad of vendors and tools
	ALM tool model
	Configuration management
	Tool for test of special features�
	Some basic terms
	Test management tool
	Test management tool requirements
	Using test results to assess quality
	Graphs supporting test completion decision
	Potential benefits of test management tool
	NOTE!! Using a test management tool is no guarantee for high quality deliveries
	Incident management tool
	Incident workflow example
	Tools for test design and test data generators�(From Hans)
	Tools for static testing
	Test automation
	Things to consider when planning test automation
	Planning- Factors to consider when picking the best candidates for test automation
	Soft aspects related to test automation
	Test automation initiative and organization
	Test automation – different tool types
	Keyword driven tools
	Cost of automation
	Calculation of ROI for test automation
	Service testing – 4 focus areas
	SOA test harness� A lot of services do not have a user interface
	Some commercial SOA testing tools
	Risk with tools (from Hans)
	Introduction of tools
	Tool selection process
	Selection criteria	
	Tool introduction
	References

